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ABSTRACT

A ring-reinforced, orthotropic circular cylindrical shell subjected
to external hydrostatic pressure loading i investigated. The stresses and
defleciions throughout the sheil are determined by a shell theory which con-
siders the combired and separate effects of large rotations, transverse shear
deformation, initial deflections and F}Ugge type thickness terms. The ring
deformations are described by both a deep ring theory and a plane strain
analysis. The resulis are used in the development of pertinent design for-
mulae. Numerical results applicable to a typical glass=-reinforced=-plastic
shell indicate that the nonlinear effects may be accurately provided for by
using a perturbation solution. Hill's criterion for yielding of an orthotropic
material as well as an analysis to approximate the actual stresses in the con-

stituent materials of a nonhomogeneor; shell are aisc applied.
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LIST OF SYMBOLS

parameter measuring higher order effects in

governing differential equation, Eq. (2.4)

arbitrary constants of integration in Lame

anaiysis of ring, Eqs. (3.10)

constants in elastic law relating stress re=-

sultants to strains and curvature change, Eqs. (2.13)

cross-sectional area of ring frame, Eq. (3.3)

parameter measuring coupling of beam column

effect with transverse shear effect, Eq. (2.4)

arbitrary constants of integration of solution
to governing differential equation of deflection,

Eq. (&.7)

axial flexural rigidity of shell, Eq. (2.17)

[
modified flexural rigidity (includes Flugge
and nonhomogeneous effects), Eq. (A.28)

moduli of elasticity in axial and circumferential

directions, respectivelby
modified elastic constants, Eq. (A.28)

circurniferential and radial elastic.moduli.of.

ring, respectively

circumferential force acting over ring cross

section, Eq. (3.2)
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functions of sheil material, geometry and load,
€qs. (4.12)

transverse shear modulus

modified shear modulus, Eq. (A.28)

constants measuring ratio of ring deflecticn to
interaction pressure corresponding to ring theory,
isotropic and orthotropic Lamé analyses, respectively
length of unsupported shell between riﬁgs, Fig. 1
center to center distance between rings, Fig. |
effective width of shell plating, €g. (6.10)

axial bending moment per unit circumferential length
axial force per unit circumferential length

circumferential force per unit axial length

transverse shear force per unit circumferential
length

Q evaluated at the frame (i.e., at x = x L/2)

equivalent radial line load (per unit circum-

ferential length) on ring, &€q. (6.2)
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equivalent line load on sectign of shell in

contact with frame, Eq. (6.6)

radius of datum circle in ring, Fig. |
radial coordinate, Fig. 1|
radii of outer and inner :ing surfaces, respectively, Figl

radii of interior surfaces of outer and inner

flanges of ring, respectively, Fig. |

radius of surface of contact between ring and
shell, Fig. 1

nondimensional shell deflection parameter, £qs. (5.3)
W at midbay and frame, respectively

axial, c¢ircumferentlial, radial and transverse

shear yield stresses, respectively

radial ring coordinate measured positive inward

from ring datum circle, Fig. 1
mean shell radius, Fig. |

constants in elastic law relating stress resul-

tants to strains an.’ curvature change
faying width of ring, Fig. 2

width of ring, Eq. (3.3)
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width of ring web

widths of outer and inner flanges of ring,

respectively, Fig. 2

nondimensional geometric ring parameter, Eq. (3.4)
depth of the ring cross section, Fig. 2
plastic potential function of the stresses, £q. (7.1)

characteristic functions of shell differential
equation, Eqs. (5.8)

characteristic function evaluated at x = L/2
shell wall thickness, Fig. 1

radial distances from datum circ!
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inner surfaces of ring, respectively,
esiternal hydrostatic pressure
pressures acting on ring surfaces, Fig. 2
axisymmetric buckling pressure of an unstiffened
orthotropic circular cylindrical shell under
axial pressure, Eq. (6.15)

axisymmetric buckling load of ring supportec

orthotropic circular cylindrical shell under
hyéroastatic pressure (6.16)




Py(K,Z), Pyl(x)z)

pya(x)z)

pyo(x): Py(X,O)

interaction pressure between ring and shell,
Eq. (6.4)

pressures required for shell to yield at the
position (x,z}) predicted by Hill's criterion
and maxime siress criterion, respecii.ci,,

Eq. (7.2)
approximate value of py(x,z), Eq. (7-4)

pressure at which yielding has penetrated through
half the shell thickness, Eq. (7.5)

lengths of infinitesimal line element in shell

wall prior to and after loading, respectively

P

thicknesses of outer and inner flanges of ring,

respectively

axial displacement of shell median surface
axial displacement of point in sheii wail
inward radial defiection of shell median

surface measured from median surface prior

to loading

initial deflection of median surface
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inward radial displacement of ring outer

surface, Fig. !

inward radial displacement of length of

shell in contact with ring

particular solution of governing differentia)

equation
ax’'al and inward radial cocrdinates measured
from the median surface of the deformed shell

at midbay, Fig. 1

value of x at position of minimum bending
stress, Eq. (6.9)

parameter

inward initial deflection at midbay

initial deflection for which shell particular

solution vanishes, Eq. (&4.2b)

initial deflection for which the shell deforms
without bending, E&q (!.10¢)

initial deflection for which interaction

pressure vanishes, Eq. (6.4)

constants depending on yield stresses and

Poisson ratios of shell material

.nondimensional shell curvature parameter,

Eq. (5.3}
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values of A at midbay and at frame, respectively
ring=shell interaction parameters

parameter measuring higher order effects in

governing differential equation

values of ¢ at buckling load

parameter measuring Flugge effect, Eq. (2.4)
nondimensionai ring=shell intaraction parameters
bc/Lf
measure of the beam-column effect, Eq. (2.4)
value of .y fot'which shell buckles
nondimensional load parameter, Eq. (2.4)
transverse shear strain

= h/2a

internal or external ring indicator

axial and circumferential strain components,

respectively

axial and circumferential median surface strain

components, respectively, Eq. (2.12)




{zeno 'subscript) and after (one subscript) de-
formation, Eqs. (A.1), (A.1)

ﬂl 2 real and imaginary components of roots of

characteristic eauation, £q. (4.5)

M =iy

8 shell flexibility parameter {= L“lhg;/uazoil'/“}, Eq. |

3 roots of characteristic equation
*1,2,3,4 1
A nondimensional ring material parameter, Eq. (4.4)

nondimensicnal ring shell interaction parameter

>
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VoV v Poisson ratios of shell material

v modified Poisson ratio, Eq. (2.17)

< circumferential s+rein in the length of shell in
contact with the ring
€a radial ring strain
(co, go) inward radial and axial! coordinates, measured
€, €) from midbay at the median surface of a2 perfect
>
) l cylindrical shell, to points on the shell before

(0
Vp v V. s Vg ring Poisson ratios
R x f
f f
£ nondimensional measure of the transverse shear

effect




axial and circumferential shell normal stresses

axial and circumferential bending stresses

radial and circumferential normal stresses in

" Mirlg, Wedpectively

shell circumferential membrane stress due to

axial bending
transverse shear stress
circumterential cylindrical coordinate

axial rotation {measured with respect to

initially deformed cylinder)




I. [INTRODUCTION

Attempts to design submersible vehicles capable of extended latcral
excursions at great depths have led to extensive research on ring-reinforced

cylindrical shells constructed of filament wound composites. This material is

relatively eacy to fabricate and possesses a much higher strength-to-weight

ratio than the commonly used metals. The shells (and ring-supports) are formed

by winding strong glass fibers about a cylindrical mandrel and either impreg-

nating or preimpregnating them with an epoxy resin.

For many applications the shell material as described above may be

considered as orthotropic and nonhomogeneous through the thickness. For deep-

submergence vehicles the shell thickness must be relatively large in order to

withstand severe pressures. Observed shell failures indicate that transverse

shear may be a significant factor of the collapse mechanism (Ref. 1) Further=

more, built=in outward initial deflections may enable the designer to utilize

the ''beam-column'' effect to strengthen the sheli. Thus, the analysis presented
Y

here considers the separate and combined influence of these effects on the
stress state of the shell.

Numerical results demonstrate that the more accurate calculation

of the cross-sectional area of the shell (which increases the axial stress

resultant) is the only significant thick shell correction. It is found that

..... sc sheai is considered. However, the com=-

parison made with the three-dimensional elasticity analysis developed in Ref. 2

indicates that no improvement is obtained by permitting transverse shear de=~

formations.
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Because of the low radial yield stresses of the composite, yielding
(as described by Hill's orthotropic criterion) can begin well in advance of
experimentally obtained collapse loads. The elastic region is thus confined
to relatively low pressures. This, in turn, keeps the deflection small enough
to avoid any significant beam=column effects. Initial deflections, on the
other hand may be large enough to cause substantial beam-column effects even
at relatively low pressures. Thus, initial deflections could affect the
stresses and hence change the value of the lead for which yielding begins.

To obtain accurate estimates of the stresses in the constituent
materials it is necessary to consider the nonhomcgeneous nature of the
structure. When the stresses are thus obtained and utilized in a maximum
stress yield criterion, the yield pressures obtained are reasonably ciose
to the experimental collapse pressure.

The deformation of the reinforcing frames are, in general, adequately
described by ring theory (which permits only circumferential stress). However,
the frames of interest here are constructed of an orthotropic material for which
radial deformations may become significant. For this reason a more accurate
plane strain analysis is performed, in addition to the ring analysis, and a
comparison is made for internal frames of rectangular cross section. Excel=-
lent agreement is found for a particular ring considered in this work.

Designers of present day submersibles are familiar with the for=~
mulae first developed for thin, isotropic metal shells by van Sanden and
GUnther (Ref. 3), which were later modified by Viterbo (Ref. 4), and finally

by Pulos and Salerno (Ref. 5). The results presented here represent an ex-




tensisn of the work of Ref. 2 in thz2t the formulae obtained therein for use
of metal shells are modified to include rmore complicated filament wound com-
posite shells. These include solutions for various stresses, points of
minimum bending, ring-shell interact »n pressure, axisymmetric buckling
loads, effective width ot shell plating, stress in the reinforcing rings,

yield sressure and the location at wittvh yielding begins.




2. Governing Shell Equztions

The differential equations of equilibrium of a circular cylindrical,
orthotropic, ring~supported shell subjected to hydrostatic pressure loading

are found to be [see Fig. | and Appendix A; Eqs. {(A.20), (A.31) and (A.33)]

. 2 b,
W x + 4(8/L) (A/B)wJxx + 4(8/L) 'w/B = (47§/B)wo,xxxx

- [47(9/L)2/B]wo,xx + 8(8/0) %1 I-(v;;(/Z) (1+6)1/aB(1+6) (2.1)

@ = [Bw,xxwhg (9/L)2w+8';§[I-(v;;(/Z)(l+6)]/a(l+6)-‘+7§wo)xx}/(l+2a§) (2.2)

2

The associatedconditions at the shell boundaries x = + L/2 are

WoE W= Wy (2.3a)
W= 0 (2.3b)

In Eqs. (2.1) to (2.3) w is the inward deflection of the sheli median surface
from the initially deformed shape and w is the additional rotation of the
median surface normal about a circumferential tangent; Wa is the inward

radial ring displacement at the contact surface between the ring and the

I3

shell and W, is the inward deflection of the section of shell in contact with

the ring.
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5.
Also,
Sl - b €/ = hesuatn”
A= 7 - g +Q B = 7§ L = ¢ X
- 3= =N /De/1)2 t = (8/0)% /h6"
r=7= x"Tx xxz
a = as%c” /3" (6/1)° 6 = h/2a (2.4)
= 20

- ¥ kS w
The quantities E¢, Dx, qu

of a shell whose material properties vary through the shell thickness h [see

and G;Z represent standard stiffness parameters

Eqs. (A.28)]; a is the average radius and L is the length of the unsupported
shell (see Fig. 1). Nx is the axial stress resultant, which for this problem

was found to be closely approximated by the constant (see Eq. A.26)

N = = (pa/2)(1 + 6)2 (2.5)

X

The parameters ¥, £, @ and 5 represent the effects described in the introduction:

b 740 ) ¥y =0 Beam-Column effects neglected

2. £=0 Transverse shear deformations neglected
"

3. a=%=0 Flugge thickness terms neégiecied

Hence, in the analysis which follows it is possible to evaluate the individual
and combined nature of these effects. In Appendix A the necessary procedures
required to reduce the governing equations (2.1 and 2.2) both to those obtained

in Ref. | and to those deduced in Ref. 6 are discussed.




Since condition (2.3a) depends upon the ring support, the ring=-

shell interaction problem wili be investigated before a solution is attempted.




5. RING-SHELL INTERACTION

The rings considered are assumed to be constructed of a linearly
elastic homogeneous material and to have cross sections of the generalized
I type.. If a ring is assumed to resist its loading with only a circum-

ferential stress, the corresponding strain is

¢, =~ W/ (R - 2) (3.1)

where wq is the radial displacement (positive inward); R is the radius of

a datum circle. Z is the radial ccordinate measured positive irward from

the datum circie. The circumferential stress is given by
Oy = Esfes - -(Eswa)/(R - 2) (3.2)

Esf is the modulus of elasticity in the circumferential direction. The cor=

responding hoop force is

h;

Fo=[ ob@)dZ = - E_Ac'(w/R) (3.3)

[¢]

where b(Z) is the width of the ring at 2; ho and hi are the radial distances
from the datum circle to the outer and inner ring surfaces, respectively,
and Af is the ring cross-sectional area. The nondimensional parameter c' is
defined by

¢! = A’-‘—f b(2)/(R - 2)dz (3.4)

| ..




and depends only upon the geometry of the ring cross section. Appendix B,
taken from Ref. 7., evaluates ¢' for different types of "I" ring cross
sections.

The hoop force Fs acting on the ring is easily obtained by cutting
the ring in half and finding Fs necessary to maintain equilibrium (Fig. 2b).

This leads to

_ h -t h, h ho-t,
Fo = Rlpgba (1 + =¢=) + pib, (0 = =) =p b (1 + =) - pibi(1 = ——)]
R R R
(3.5a)
where
by = by = b (3.5b)
bj =b, ~b (3.5¢)

bw is the web width, bo and bi are the outer and inner flange widths, res-
pectively; and ty and t; are the thicknesses of the outer and inner flanges,
respectively. Py’ pé, Pis p; denote pressures; the subscripts o and i de-

note the outer and inner flanges, respectively, while the prime superscript

denutes the surface of the flange nearest to the datum circle (see Fig. 2).

If the frame acts on the inner shell surface,

=0 (3.6a)

(3.6v)




b, = b, (3.6¢)

pi' = Pé = po =P (3-78)
P, = P, (3.7b)
b = b, (3.7¢)

P, is the interaction or contact pressure between the ring and
the shell. bc is the faying width of the contact surface between the ring

and the shell.

If F_ is eliminated between Egs. (3.5a) and (3.3), a relation be=

tween the radial ring displacement and pressure loads is found

wo = = RIpRIb! + p.Rib. = pRob <p/bIR!]/(E AcC') (3.8a)
where
Ry =R -t (3.8b)
R = R, + t, (3.8¢c)

and Ro and Rl are the radii to the outer and inner ring surfaces, respectiveiy.




A more accurate description of an.orthotropic ring of rectangular
cross section may be obtained by permitting radial strains in addition to
hoop strain via & Lame plane strain analysis. The field equations necessary

to describe such ring deformations are

&g = " YR (3.9a)
€, = = W/R (3.9b)
eg = (o = vRsfus)/ERf ' (3.9¢)
e, = 1 (o = vstaR)/lasf (3.9d)
(RUR)’R =0, =0 (3.9e)

R is the radial coordinate measured from the center line of the ring, ERF’
E s V y ¥ are the elastic constants of the ring. The solution is
sf’ 'R ]
sf RF
_ - A=l = “A-1 2
O = ERf[ AL+ vst)R + B(A - vst)R IVASIE P (3.10a)
o, = E_ - A(Avy, + nrR>t e B(w, - DRy 00 - vfz) (3.10b)
< cf Reg Rs f
we = AR" + BR™ ‘ (3.10c)

where, for an Internal frame




A= [Pc(l-va)RO"Xl/{ERf(k+vst)[l«(Ri/Ro)le} (3.10d)

B = lpc(l-vfz)ﬁo‘+kj/iERf(X-vst)[(Ro/Rl)zk-I}} (3.10e)
2

) NN Esf/ERf (3.10f)
v,2 =y vd (3.109)
f st S¢

Thus, for an interrnal frame the relation between interaciion pressure

and the radia! displacement of the frame cuter surface is expressed by

(ssfwg/pcao)={x2(|~vf2)[(x-vst)+(x+ust)(|-d/ao)”

- {(X+vst)(X~V‘Rf)[l-(l-d/Ro)2x}} = Ky (3.11)

where d is the depth of the ring cross section.

Fur an isuLrupic material
(E, g /B R = L (=v e+ (14v) (1=d/R )21/L1-(1=0/R )2 ) = K, (3.12)

For an internal, rectangular cross section frame, ring theory gives
'see Eq. (2.8)]

|

(Esfwk/pcko) = = (Z-d/RO)/{(d/RO)[2+(!/6)(d/RO)z(l-d/Ro)zl} = K, (3.13)




12.

A comparison of the two solutions may be obtained f:rom Eqs. (3.12) and (3.i3)

e (/) = v+ ot (3. 1%)

Thus, for thin isotropic rings the two solutions are in very good
agreement . Furthermore, when the grthotropic Lamé solution. is compared
with the ring solutiony the agreement is even better for the particular shell
examined in this work.

The radial ring displacement and shell deflection must be matched
at the shell boundaries. Because the shell theory used here cannot describe
the radial chianges in stresses that occur in the shell region in contact with
the ring, that length of the shell is treated separately with a simple analysis.
Since the ring and shell are bonded together, and classical ring theory does
not provide for distortion of the ring flariges, the assumption is made that
the portion of the sheil in contact with the ring does not bend. With this

assumption, equilibrium of radial forces leads to (see Fig. 2¢)
b Ny = 2ca + [{I+6)ps” + (1+5-26 )p Jab_ = 0 (3-15)

where

.1 for internal frame

0 for external frame

(continued on next page)
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b for internal frame

b ={°
C bi for external frame

(3.16)
and from Eq. (A.2Tb) and the above assumption
5. (N~ vo N )/hET (3.17)
a s @ X ?
Combining Eqs. (3.15) and (3.17) to eliminate N, yields
W, = (azlhﬁg)[ (1+8)ps” + p_(1+6-26") = (20./b ) + v;(N;/a)] (3.18)
The matching conditions are that
Wo = W (3-19a)
Wy = W (3.19b)
Equation (3.19a) is used to satisfy the boundary condition Eq.

(A.20b). Eq. (3.192), combined with Eqs. (3.18) and (3.13), leaves an ex-

pression for the interaction pressure in terms of quantities which can be

determined from the shell solution

b = (@ /BY-(2Qe/b) + v, (N, /a) + pl(1+6)8 +x"]

where




4.

A = (ac/ac)(l-b )[(Af/bcRc) - 1]
B, = b/l
a = (E A.c'al)/(E hL.RR )
(el mf f ¢ f ¢

Lf = L + bC

Ro for internal frame
R, = {R

i for external frame

ﬁc = (28 ‘])(Qé + Bc) - Qcﬁ (3.20)

The N term in Eq. (3.17) corresponds to the ''Viterbo effect'’

(Ref. 4) in that it accounts for the two-dimensional nature of the stresses

in the straight section of the shell adjacent to the ring.




L. SOLUTION OF GOVERNING SHELL EQUATIONS

The solution of Eqs. (2.1) and (2.2} subject to boundary condition
Eqs. (2.3) can now be obtained. Llunchick and Short, Ref. (8) suggested that
the initial deflecticns encountered in isotropic metal shells could be approxi-
mated by a simple parabolic function which would ensure constant axial curva=

ture. This form is assumed here; thus
2
W, = Al = L(x/L)%] (k.1)
where A is a constant equal to the largest value of W, (at midhay). With

the type of initial deflection described in E¢. (4.1), a varticular solution

to Eq. (2.1) is

- 2
=8 - e .2
v (®7 7AP)/ {%.2a)
where
2 W
== L1 = 2)(1 +8)1/4 + 8) 4.2b
8, (1= (vp 72) (1 % 8)174a(1 + &) ~ (4.2b)
If the complementary solution of Eq. (2.1) is assumed to have the
form

v~ &% (4.3)
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The characteristic equation becomes

| A+ u(e/02(BN? + w(e/0)*/8 = 0 (b.4)

with the four roots

)'I,Z,},h =z (e/L)F7§ g“ '] i!\}' -1 (4.5a)

or

N,2,3,5 = % 28/L) (M imy) (4.5b)

where

M2 =!1 /e (¥.5¢)




7.

Numerical results demonstrate that for the range of ¢ and a
of interest in this report, the shell reaches a yield condition while
y, ¢ and @ are in the region defined by *2 < |. Moreover, in this re=-
gion the following spacial cases can be obtained:

1. Neglect beam-column effect by setting > = 0

2. Neglect transverse shear effect by setting &£ = 0

3. Neglect Fl:gge type corrections by setting & = 0 and & = 0.
Therefore, the only solution considered in this work wiil satisfy the in-

equalities 0 < 42 < 1 and B > 0. The final form of the soiution depends on

whether :
8 3 0 (b.6a)
* = 0 (l&.ﬁb)
or
2 v
0 <y <1 (4.6¢)

Thus, the solution of £q. (2.1). can be written in the real

form

wix) = wP[l + T c.g9.(x)] (k.7)

where

g'(x).s sinh(anex/L)cos(anex/L)

{continued on next page)
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gz(x) - sinh(znicx/L)sin(Zﬂzex/L)

gj(x) = cosh (Zﬂ,iex/L) sin (Z‘T\Zex/L)

gu(x) = cosh(Zﬂiex/L)cos(anﬁx/L) (4.8)

<; represents four arbitrary constants of integration. Symmetry demands

that (see Fig. 1)
The constants cy and c, are determined by using the boundary

conditions defined by Eqs. (2.3) in conjunction with Eqs. (3.18), {3.20),
(A.34), (A.35), (4.2), (b.7) (4.8), and (4.9). Hence,

¢ == NG =7/ 0n - 78,) (4.10a)
whe re
nE - B:s sz/{aaiml (l-gc)[s:+(1+6-25*)acl/sc] (4.10b)
B, = b L (114 (146-26") (o /87) 1(67- (v, /2) (148) ]
+ acf';/lﬂj(l-fb) 1}/7ka(148) (4.10¢)

Also,




/ = . /G o

where

19.

(4.11)

G, = l(h/G)(9§0+9%0)]/[(Blfq‘)(950920+9,09“0)+(82/n2)(9509“0-910920)] (k.12a)

G, = L(B,/m))9,g%(B,/n5) 9301/ L (8171 ) (9353,0%91990)+(B2/M2) (9509409 992¢) ]

G5 = {(l/ﬁz)(940950-9,0920)(B|+“§¢)-(I/ﬂ])(930920+9,0940)(82+4§w)i/[(B,/ﬂ,)(gjcgzo

+ 910%0) * (By/1) (93050 = 90920
G, = (B, /n;) sy = (By/n g0}/ L(B /1)) (330955%9)0940)
+ (8,/17) (83091979 0920) |
By =1 - 26028 - 20 = {(1-24)]
B, = 1 - 28(20 = 2o + (1+2y)]

2

9]0.' 920’ 930) 9“0 = QI(L/Z), £} (L/Z),gB(L/Z),gL‘(l./Z)

(4.12b)

(L4.12¢)

(4.12d)

(4.12e)

(4.12f)

(4.12g)




20.

The function G5 is presented 2rematurely here in order to list
the compleie set of Gi’ which is used subsequently. The functions are
similar to those plctted as tunctions ot y and 6 for the isotropic case
[see Ref. 5 and App. D, Eqs. (D12)], where the effects of transverse shear
and F!Ugge terms were not considered (i.e., £ = 6§ = o = 0}. When these
effects arc accounted for, these functional relationships change in that
6, =6;(2, 0, & & a)-

lt is interesting to note that in their work on isotropic shells
Lunchick and Short, Ref. (8), neglected transverse shear effects and found
a '"eritical' initial deflection parameter such that the sheil deforms with-
out bending (i.e., w’x = 0). This parameter, modified here to inciude
orthotropic effects and thick~shell terms, which results from consistently
maintaining FI:gge accuracy, is now given by a4 {Eq. (L.10c)].

The deflection may now be expressed as

- — - G
W= [8(7a-7Ap)/62]{ =L Oa=ya)) (a=78) 1y, (1) + (g, (<) /4B1 ) (Eg + ) 1A

t.13)

and the change in curvature as

- G G
w = = (328°71%) (98-3,) (=1 (4 =4 /2. E{=—+ 1) ]la, (x)/4Bn.n_]
X ] * uz u2 £ 1L

+

G
+ (2—‘5’; - £)g,(:)1/(1 + 208) (b.14)
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The shear stress resylitant at the frame is obtained by combining Egs. (A.27c),
(5.10), (4.13) and (2.3b). Hence,
3
4G A" _
QN = .B—G-Z'L_ [(2/7)a - 4] (&.15)
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5. STRESSES IN SHELL

The stress-dispiacemen. relations are obtained by combining Egs.

(A.5), (A.21) and {(A.23); hence,

o, = [Ex/(l-vz)][exo-vq’xw/’(a-Z) -z ) (5. 1a)

o = e/ (=)l (am2) + yole, -20)] (5-1b)
From Egs. (2.11a) and (2.17)

ex, (172 )N, +a (w/a) +bo ] (5.2)

It should be noted that the entire analysis to this poiﬁt can be
applied to a shell which is inhomogeneous through the thickness. In an actual
filament wound composite shell, the elastic constants are discontinuous functions
of the thickness coordinate z; hence, the actual stresses are discontinuous
functions of this coordinate. 1In the present analysis the less complex state
of stress in an equivalent homogeneous material will be computed. The stresses
in the actual (nonhomogeneous) shell are approximated in Appendix E, in which
suitable multipliers (stress concentration factors) are utilized.

Equations (5.1) and (5.2) combine to yield, for a homogeneous material,

22:]_53_2.\:%_(-2-)w-(§+-2—z-)/\ (5.3a)
Ny 1-26(%) " 5 h ‘
o 1+ za(Jz—z) &S
= ! -\,L:f-')- (— 25(%;" W= G By (5-3b)
where
W(x) = Ew(x)/N (5.3¢c)
M) = LEN 200 Jol) (5-39)
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The shea~ siress is assumed to ve parabolically distributed across the

shell thickness. i.<c.,
. 3 _ oy .
vxz - 2 (Q/h)l, ] 1+(h) - (5'4)

Thus, the maximum shnear stres: occurs at the median surface. At the

frame, this stress is

szfh 6G‘A* - .
T (/708 = 4y , (5.5)

The direct stresses can be separated into their memb-ane and bending components;

thus,

dxh

&) =1 - 503 (5.6a)
membrane

a h

(;;f—) = VgLl = (VadWly, = s3] (5.6b)
memb rane

f."x:l 2

(Nx ) = « (bt unw + A) (22/h) (5.6c)
tending

b
o h £()
Qfgﬂ = - ["—2--;_ W+ A](%% (5-6d)
A g Ty ()

bending xP

in which the approximation that
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1

—— ]+ 26(5) (5.6¢)
1 -2 h

has been used. A shell subjected to the symmetric type of load-support systam
described here will usually develop its largest stresses either at midbay or
at the ftrame. Therefore, the computations in this work will be at these stations.

Hence, it is convenient to list the nondimensional parameters

L, . -
-4 -2, 4 -4,

E - wts
b= - 8 e (5.7a)
@
hy2 b2 Zp-4
8(3)°M 6"k - 1 o
Ay = 2 ;EL > = (7 h )(G“ - 2562)9—} (5.7b)
(1-v9)E 2
P
€ E 4 -2 E & =28, .
M = - 8 S () - g (5-7¢)
€ 2
@
8(h)2('5")u62£ — A=A W
he = /a2\L i G IO 25’%2'] (5.7d)

where the subscripts m and f imply that the function is calculated at the
midbay and frame shell stations, respectively. The stresses can be calculated
by substituting Egs. (5.7) into (5.3) ior (5.6}, if the membrane and bending
stresses are desired].

The beaw.-colur- term 7, in the absence of transverse shear ang
initial deflections, has been shown to have little effect on the stresses

in the primary region of interest [see Ref. 7]. However, the combined




fects of beam-column and initial deflection terms a)}, or of besm-

<iw

column and transverse shear terms (7%, B), can be substantial. This can

be seen from an examination of Eqs. (.57) and (5.6). For sxample, the

bendinyg stresses become extremely small in the neighborhood of 3 = Al (they

11
vanish when Flugge terms are neglected). When transverse shear deformation

is considered the bending stresses may be considerably affected, depending

upon the magnitude of €.
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6. DESIGN FORMULAE

The shell stresses and deflections may now be utilized to develop

conveniant formulae for several quantities which may be of interest to the

designers.

A. Circunferential Normal Stress in Ring
Combining Eqs. (A.26), (3.2), (3.19) and (5.7c) yield the follow-

ing expression for the circumferential normal stress in a ring:

og= = (EL/EJ M /MW /R ~ 7))
X pa
NOE. 3232 ZbA-s, Za-ay
= (Y (2 —— (2 ) - (& )n"] (6-1)
h £ (R-2) h h

B. Equivalent Line Load on Ring

If a line load 6} acting at the ring datum circie is made stati-
cally equivalent to the total inward radial load acting on a ring segment,

then radial equilibrium gives
Q = -F /R (6.2)

Then Eqs. (6.2), (3.3), (3.4) and (6.1) combine to yicld
L4 - Zy-a
N E Ac' - s} b i
o = (=2 (2L . 232 7 y o (L w
Qe = ( h)(E* ) ( = 132(D)°1( ) = ( —n) (6.3)
¢

where Qf is chosen positive in the inward radial direction.
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C. JInteragtion Pressure

The interaction pressure may be calculated from Egs. (3.20) and

(4.15). Hence,
* i<p ® G ) -
p = pU1+0) (o /80) (Ho(z=S)h GO/ = 8y) (6.8)
L c
where
by = by = LBBISY « (v /2) (1+6)1ka(14+8) (1-8) G,
% 2 3
- AU /ka(1+8) 100 + B8 /(18 )G ] (6.5)

Thus, for a large enough outward initial deflection (Az), the interaction

pressure vanishes and the frame would be ineffective.

D. Equivaient Line Load on Effective Ring

The line load acting on the section of shell in contact with the
frame is defined to act at R and to be statically equivalent to the radial

loads acting on this shell section.
T, = (ab /R)ips" ~p (2 = (146)] = (2q,/b.)) (6.6)

where p_ and Q. are obtained from Egs. (6.4) and (4.15), respectively.
if the ring and the section of shell attached to it are considered
together as an ''effective ring', the line load acting at R which is stati-

cally equivalent to the applied radial lpads is obtained from
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Q =q +7Q 6.7)

C

E. Axial location of Vanishing Curvature Change

1t may be of interest to the designer to know positions along
shell generators at which the bending stresses are negligible. An inves=
tigation of Eqs. (5.6¢c) and (5.6b) reveals that the bending stresses be-

come nigher order when the change in curvature vanishes, i.e., when

A=0 (6.8a)

or

w =0 (6.8b)

Equation (6.8b) and Eq. (4.14) then combine to give the equation to deter-

mine the point x' at which the change in curvature vanishes. Hence,
- [}
(l/than){[w(Gu/az) + 1172 + €[(6,/G,) + ¢1}g, (x")
+ [(6,/26,) = £lg,(x)} = ¢ (6.9)
x' must, of course, be obtained by a numerical procedure. It is noted that
when beam-column effects are considered, x' varies somewhat with 7. There-

fore the location at which bending is minimized {in the above sense) varies

slightly with applied pressure.
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F. Effective Width

1f, as in some ring stability analyses, the entire structure were
thought of as primarily rings with modified flanges (i.e., the shell skin
is treated as an additional flange on the ring), then it is of interest
to establish that axial length of shell which may be used as an effective ring

flange width. 1The criterion used to determine this "effective=width' is

(see Ref. 5)
&) qu () ' (6.10a)
LN (3) = N_(x}dx = IN -10a
e P2 -2 ® c‘paver.age
where
Nq)(x) = hc’w(x) (6.10b}

1
Le is the effective width. N¢ is the resultant of the modified circum-

ferential membrane stress o_'(x) which, in turn, is that portion of the

M
circumferentiai membrane siress which is due to axial bending. o L{x) is
obtained by omitting terms which did not arise from axial bending considera-
tions from the stress given in Eq. (5.6b). Thus, from the circumferential
membrane stress one must subtract the hoop stress of an unsupported cyline
der under hydrostatic pressure p; this leaves o¢é(x) as that part of the
shel]l membrane stress which is caused by the ring (which causes the axial

bending). Hence, from Eqs. (5.66), (5.3c) and (k.13)

s (x)h v BE_78
I B By (w(x) + —=2=2] - & 2(x) 6.11)
Nx a Vx¢ g OzN 3 g

X
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Considerations of overall equilibrium of a shell loaded only by the inter=
action pressures leads to .
LeNq) = pcbc(l -6 =28) (6.12)
average
Therefore,

¥ - 2
L, = (pcbch/Nx) (1-5-28 )/[(vq:“h/vx(pa) (Nf+8Ex7A°/Nx6 )-5Af/3]

(6.13a)

1
When transverse shear, initial deflection and Flugge effects are neglected

(¢ =a=86=4=0), this relation reduces to Ref. 7)

L, = 16, + b_ (6.13b)

G. Axisymmetric Buckling Loads -

Axisymmetric buckling of a long, unstiffened, crthotropic, circular

cylindrical shell would occur either at

V=9 =1 (6. 14a)
or

B=8B =20 (6.14b)

depending on which of the above conditions occurs at the lowest 7 {see

Appendix C). When :he transverse shear parameter & is relatively small

p—vy
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(ze large) the criterion for buckling of an unsupported, infinite length
shell is given by Eq. (6.14a). From this, the axisymmetric buckling load

is

p =
a“(1+8)

. a,lhs*o*
e ([T Me - g o2 (when |- b2t > 0) (6.15)

The ring-reinforced shell, due to its greater rigidity,

possesses an axisymmetric critical load Per in excess of that of an

unstiffened shell, i.e.,

(6.16)

>p or
P cr

At the buckling load, the deflection becomes infinitely large.

Examination of Eqs. (k.13) and (4.10b) shows that this occurs when

%
)
’

—
(€)Y
=3
g

1/ = 0
1/D ~

“e'Pe

Bp” + G (1 - )el+ (146 -2

However, since Ver > 1, G, in its present form [see Eqs. (4.11d), (4.11c)

and (4.7)] is a function of imaginary quantities. In order to avoid this,

the buckling criterion is rewritten in the form

B, + G5(1,) (B, + (146 = 26™)a 1/B_ = 0 (6-18a)

where




AV
[ ]

i cosz(ﬂle) - cosz(ﬂza)

lzq-sin(ﬂ;e)cos(n;e) + %Z cos(ﬂze)sin(ﬂze)][|-2§(2§-C)]
m, 2

(6.18b)
is obtained by setting
! -
== in = v = 1/(2/B) (6.18¢)
in the equation for G-
If, as occurs often in practice,
B, << & << ] (6.19a)

The buckling load cuan te arproximated from a numerical solution for i . of

ac(zs"" “1) 46 =0 (6.19b)

If more accuracy is desired, the solution of Eq. (6.19b) may be

used as a first approximation in an iterative sclution of Eq. (6.18a).

For a rigid frame (shell has clamped ends) Q% -~ o . Therefore,

in order to fulfill the buckling criterion (6.18a)

5 = = (6.20a)
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This requires that [see Eq. (6.18b)

By . . "ty L B2
: 5|n(T',16)cos(ﬂ19) + cos (M 9)sin(‘n26) =0 (6.20b)
uh T 2

It is noted here that the results presented in this section are valid for

both interna! and external rings.




7.  YIELD CRITERIA

The collapse mechanism of filament wound composite shells is not as
yet fully understood. Experiments indicate that collapse oczurs near
the frame before the buckling pressure is reachied {Ref. 1 ]. Although
the severe delamination noticed in ruptured shells indicates an ultimate
shear failure, the prevailing opinion seems tc be that collapse occurs
after a complicated sequerice of the combined effects of yielding, local
instabilities and crack propagation.

It is not the purpose of this work to develop a mathematical
means of describing the collapse mechanism, but rather to describe the
stress state while the shell material behaves as an elastic continuum.
It would, therefore, be advantageous to have some idea of the range of
pressure for which the linear elastic laws are applicable.

In Ref. 11 , R. Hill developed a three=-dimensicnal yield
criterion to be used on orthotropic materials. He introduced a 'plastic
potential'' function of the stresses which, for an orthotropic material
in a state of modified plane stress, with transverse shear, can be writ-

ten in the form

[s) g
f2 @ (@ - oo e Ly e 2 (T
Y Yx x Q v 2 y 2 2 2
@ X z zX

where f is the 'plastic potential' function, Yx’ Y YZ and sz are the

cp)
respective axial, circumferential, radial and transverse shear yield

stresses. In Ref. T , in which a composite shell theory was developed




without introducing effec.s of transverse shear deformation. *he correspond-
ing farm of Eq. (7.1), i.e.. Tox = 0, was employed.

The yield criterion is defined to be

f=1 (7.2)

Equations (7.2). (7.1) and (2.5) combine to give a formula for
the pressure necessary for yielding to occur at a particular position of

the sheil. This 'yield-pressure' may be calculated from

) h, .
P o) 2L QL Ay ) o2,
YZ (l+6)2 Nx Nx Y@ Nx Yx Nx
cgh ab Y h
b (2 ¢ AR 7.3)
X X2 X

wWhen beam-column effects are considered, the right=hand side of
Eq. (7.3) is dependent on py through the parameter 7. in such a case the
equation is transcendental in py. A gsood first approximation for py may
t: obtained by taking 7 = 0 in the right-hand side of Eq. (7.3); then, if
more accuracy is desired, the vieid pressure thus obia'ned couid be utilized
to initiate an iterative numerical procedure for a more accurate solution.
Fiberglass shel!s are generaily constiructed so that the radial
directior is normal to every filament. The radial yield stress (YZ) of
sutn sheiis is the relatively, small yield stress of the resin, Thus, a

grnod approximation to the yic < pressure is given by




36.
(* z) Z EQ ch o T _h . »
-J-,—-— — | (—-—)(-‘P—> + ( o aEnT (7-ka)
z (l+6) Ne © Py
E since i
|
(/v << (7-4b)
and
(¥ << (7 -ke)

The most severe stress situations usually occur either at mid-
bay on the outer shell surface, (x,z) = (0, =h/2), or at tbe frame on
the inner shell surface, (x,z) = (+ L/2, h/2). The yield pressures cor-
responding to these positions may be calculated by using Eqs. (5.7), (5.4)

and (5.3) in Eq. (T.4a) or in Eq. (7.3).

An es

timate of the pressure Py {x) at which yielding has pene- i

o i
trated through half the shell thickness at midbay [see, for example, Ref. %], !
could be obtained by neglecting the bending stresses, i.e., by using Egs.

(5-4), (5.6a), (5.6c) and (5.7) in Eq. (1.3) or (7.4).

The manipulations described above were carried out in Ref. 7,

[N
to result in the foilowing yield pressures when transverse shear, Flugge, l

i
and initia) deflection effects are neglected:




pyo (0) =

in which

22
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h -1/2
5):.:[@ +/\(@ Gj+055'53+y——)+7(® '3+95)1 /
v (7.5a)
G ——
[ =2 72,2 2, A -1/2
)=a{O|+Al(Ym) 3,21‘+OE G, “] 2(62@5«9&5%)}
(7.5b)
h - = ] -1/2 ,
Qe + GoA(GA + 5 9) ] (T-5¢)
v
) B.& A |
- R L .5d
A a’c+Bc+(I-BC)G| % b R (I-VJJ’—E) (7-5d)
cc 2
o=l Ao 2 1
P b b4
1=y v, (1-v_) v
@2 = “%»—( - M.{. N (7.5f)
Yx Y Yz
P
1 - 2y
ej=-—]3-—*—-—%‘~+'3—2 (7-5q)
Y Y Y
X 0} z
2-3y Y 24y
®, = el o (7-5h)
4 y 2 v Y 2
P X 4
85 = dp -~y e L (7.51)
5 y 2 vy & oy 2
P X z
k.
€ 2| —%—- (7.55)
(1-v ')EQ




Note: for approximation (7.4)

6__GK:3:—
5 3 [ Y 2
FA
v,
A
) 2
Y
z
2+ v
0, = —_—
4 y 2
z

The simplest failure criterion is the assumption that the

(7.6a)

(7.6b)

(7.6¢)

material fails when the maximum stress reaches the uniaxial yield stress

of the material. Refererce 7 also applied this criterion and

arrived at the following results:

h
Y, ()
Py g5 =T
| E'-AEIQE
h
Y (=
pY (07 -%)= — Q)i
1 JeralG ey F G )
Al\‘? ’%]41

(7.7a)

(7-Tb)

-
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8. NUMERICAL EXAMPLE AND DISCUSSION OF RESULTS

Numerical computations were performed on the I1BM 7040 computer
located at the Polytechnic Institute of Brooklyn. These calculations were
intended to examine the separate and combined effects of large rotations
(beam-column effect}, thick shell terms consistent with F!Ug,e accuracy,
transverse shear deformation and initial deflections. The particular glass-
reinforced=plastic, ring=-stiffened, circular, cylindrical shell of interest
was one previously investigated by the David Taylor Model Basin [Ref. 15].

The properties of this structure are as follows:

Elastic Constants [see Egs. (A.21), (3.2), and (3.9)]

Ex = L.74 x 106psi E@ = 6.4 x ]06p5i "ze =0.70 X 106psi

Vep = 0.136 Vox = 0.176

E . =7.20x IO6 si (E.v.,. =EN ) (8.1)
sf ) P X P P xp '

The shear modulus was not available and was taken to correspond to similar

structures listed in Ref. 11,

Geometry (see Fiy. 1)

a=3.1g4"

{continued on next page)
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h = $.388"
L= 1.273"
bc = 0.271"
d = 0.542"

All calculations for stresses, deflections, contact pressure, initial

yield pressure and stress resultants were performed only feor the case of the
internal frame of rectangular cross section.

Using this ring-shell structure as a standard, it was decided to
first neglect Fl:gge terms (6 = o = 0), transverse shear deformation (F = Q)
and initial deflections (A = 0). The following three tvypes of sample caicu~
lations were performed:

1) Shell structure as above; but, in addiiion, a shell of one-

half the original thickness was also considered (i.e., h = 0.194"). Ring theory.

Eq. (3.13), was used to describe the ring deformation.

2) Shell structures as in (1) but for isotropic structural material

s

o 6 . ) o
with E = JEXE@ = 5.395 x 107 psi and v = WILQka@ = 0.1548. An examination
of either the stress equations given in explicit form in Ref. 7 or Eqs. (5.3)
of the present report led to this seloction for an equivalent isotropic
material. Such structures could be analyzed with the usec of Ref. 5.

3) Shell as in (2) bul with a less stiff{ frame of modulus

E, = E= 5.395 x 106psi equal to the shell modulus.
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The results of the zbove calculations are presented in Tables |

w

and 2 and Figs. 3 through 10. The calculations in (2) and (3) were prompted
by the similarity which exists between the isotropic equations found, for
example, in Ref. (5) (using E = {E:E;) and the orthotropic equations
[see kef. 7] In the few cases considered, this procedure was justified
since, for both the thick (h = 0.388') and the thin (h = ¢.194") shells,
the values of the stresses obtained for the ''equivalent isotropic' and
the orthotropic cases agree to within 10 percent [see Figs. 3 to 6 1.
The stiff ring [Ef/E = 1.335 in Figs. 3 to 6 ] caused smal-
ler circumferential stresses but higher axial stresses. The bending
stresses were higher for the stiff ring as expected [see Figs. 7. = .i0 ],
and the corresponding yield pressures could be slightly lower.
1t is evident from Figs. 3 through !0 that in the loading
region 0 < 7 < 0.4, the nonlinear beam column effect is small. However,
if a line is drawn at the origin tangent to the curves of Figs. 3 through
{19) (yielding the linear solution which neglects the beam=-column effect).
it can be seen that some neniinearities first appear at y = 0.25{ e-g.,
see Fig. 7 ].If 7 were taken larger than 0.4, the noniinearities would
no longer be minor. Of course, for the cases considered, when 7 > 0.4,
P > 37,000 psi (for h = 0.388 in.) or p > 10,000 psi (for h = 0.194 in.)

and these pressure

n

are well beyond the
The yield pressures presented in Table 2 are those obtained from

Eqs. (7.5), (7.6) and (7.7). When the yield pressures were calculated

from the approximation described in Egs. (7.4) and (7.6), they differed

from those determined by Eq. (7.5) by less than two percent. Thus, the




]

low yield pressures obtained are caused by the smail radial yieid stress.
Hence, if the resin yield stress could be increased, there would be a sub~

stantial strengthening effect in that significant increases in initial

yield pressure could be realized.

The remaining numerical calculations {Figs. 11 through 4] are
directed at investigating the effects of transverse shear deformation, ‘
initial deflections and thick shell (FIUgge) terms. The structure con=~
sidered is basically that described in Eqs. (8.1) and (8.2). The ring
deflection is described by Eq. (3.11}.

In the stress vs initial deformation curves [Fig. 11, 13 and 17]
the bending stresses can be obtained by measuring the vertical distance
between the outer and inner surface stresses, whereas the membrane stresses
are equal to half the sum of the outer and inner surface stresses.

When initial deflection and the beam-column effects are negligible,

the merbrane stresses exhibit very little change with increased transverse

shear dcformation effects [see Figs. 15 and 16). However, the axial bending i
stresses increase at the frame, and decrease at midbay. The lowest (critical)
yield pressure decreases slightly (See Table 3). Although in general the
beam=column effect becomes more significant when transverse shear deformations
are considered (see Table 3), this effect remains negligible for pressures
below the initial yield pressure.
The infiuence of initial deformctions stems from beam-column effects.
Because of the very small deflections for A = 0, referred to earlier (see Table 1),
the beam~column terms were insignificent. However, with initial deflections as
large as Ao = 4+ 0.2h such terms become important. Additiona! deflections (w) con-

tribute very little to beam~-column effects.
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Thus; the results shown in Figs. 11 through 18 have been obtained by using
(778 = & 7=0 (8.3)

in Eqs. (5.7). Numerical resuits for 7 # 0 have been obtained and justify
the above procedure. For example, at » = 0.3 the ahove procedure gives the
stresses to within six percent of the more accurate value. Hence, instead
of plotting numerous identical sets of curves for various values of y, it is
sufficient to present the single set of results obtained by using Eqs. (8.3).

In the absence of transverse shear deformations (¢ = 0), the bend-
ing stresses decrease with increasing outward initial deflection until, at
=28y =~ 0.072 in. for the shell considered (h = 0.388 in.), the bending
stresses become negligible (Fig. 11) and the shell {with a = AI) behaves
almost as a membrane. This effect, coupled with the sharp decrease in
hoop stress that accompanies large outward (negative) initial deformations
causes the yield pressure to increase as A becomes more negative (Fig. 12).
For A < 8y yielding can begin on the outer surface of the shell at the
frame, whereas for A > A] yielding begins at the inner shell surface of the
frame. The actual initial deflection at which yielding occurs throughout the
shell wall at the frame varies slightly from the above value when FI:gge
accuracy is msintained (compare Figs. 14 and 12).

The most important FIUgge type correction term is that which in-
creases the axial stress resultant Nx lsee Eq. (2.5)]. Further comparison

of Figs. 11 and 13 reveals that the stresses {nondimensionalized with respect

to Nx/h) are only slightly influenced Ly Flugge type terms. The actual stresses,

e ——

.




however, are proportional to N and change by about 10 percent (for h = 0.388")
due to the change "= N_. This shows up as a 10 percent decrease in yield pres=
sure when FIUQge war s ijs included (see Figs. 12 and 14).

The effect of transverse shear deformation is ta increase the
bending stresses at the frame and decrease those at midbay (Fig. 19). Also,
the value of the initial yield pressure (e g., at the shell inner surface
near the frame) decreases when such effects arz included (Fig. 16). Comparison
of Figs. 11 and 17 reveals that the changes in bending stresses described
above become more pronounced with increasing initial defle-tions. Accordingly,
the initial yield r-essure decreases with initial inward deflections (Fig 18).

Thus, from the results obtained the following conclusions may be
presented:

I. For the shell material considered here, an equivalent isotropic
analysis gives stresses accurate to within ten percent.

| 2. Stiffening the ring may incrcase the exial bending stresses
enough to weaken the structure by ~ausing early yield. This was observed
experimentally in Ref. 1.

3. The relatively short, thick shell deflects very little before
yielding and is not susceptible to heam=column effects. fInitial deflections,
however, may be large enough to cause significant beam=column effects. Short's
suggestion (Ref. 9) that the beam-column effect be utilized to strengthen
the shell by building in an outward initial deflection that minimizes the
bending stresses may be used on this type of shell. Al) that need be done

is to wind the shell on a barrel shaped mandrel.

|
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L. Yield pressures which are well below experimental collapse
pressures indicate that yielding begins well in advance of collapse. This
may be remedied by increasing the yield stress in the radial direction.

5. If the shell is permitted an additional degree of freedom by
allowing transverse shear deformation, the frame bending stresses increase
and the initial yield pressure decreases. The transverse shear deformation
theory cannot, however, be considered as necessarily more accurate; this is
demonstrated in Ref. 2.

6. The only Fl:gge type term that has a significant effect is
that due to using the outer shell diameter when calculating the axial pres=
sure fcrce acting on the shell.

7. For the shell structures examined in the present work, the
yield condition was reached before 7, &, o or & exhibited any substantial
influence on stress curves. Thus, it was found that a perturbation technique
can be employed to give fast and accurate results (see appendix D).

8. In order to obtain reasonable estimates of the stresses in
the constituent materials it is necessary to modify the stresses obtained
for the equivalent homogeneous shell. This modification can be achieved
by multiplying the stresses given by Eqs. (5.3) by appropriate stress con-

centration factors (see Appendix E}.
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APPERDIX A
BASIC SHELL EQUATIONS

The differential equations describing the axisymmetric deforma-
tion ot the shell are obtained by utilizing approximate forms of
the basic equations of the theory of elasticity.

First the strain conponents are found in terms of the displace-
mests and rotation. The length of an infinitesimal line dso in the walli
of a circular cylindrical shell with a slight axisymmetric initial de=

flection w, may be obtained from (for example, sec Ref. 6)
2,2 2

+ (g -z~ wo) do” + d(_

where

£ = x = 2w (o =2 % v, W, o= wo(x) (A. 1)
x, @ and z are Lagrangian coordinates in the axial, circumferential and in-
ward radial directions, respeciively, and aire measured from a point on the
median surface at the midbay station of the shell (see Fig. 1). These co-
ordinates are fixed to the shell. go and Co are Eulerian coordinates in
the axial and inward radial directions, respectively, measured from the
median surface at the midbay station of a perfect, undeformed shell; a is
the radius of the mediar surface and Vo is the initial inward deflection of
that surface. A comma followed by a subscripted variable denotes differen-

tiation with respect to that variable.
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After axisymmetric deformation the infinitesimal line attains a

new length ds, where

ds 2 =dt 2 ¢ (2 -z -w -wig +ag” (A.2)

with

= I % +w
C. Yo

u = u(x,z)
w = wix)

£, and [, are Eulerian coordinates similar to ¢ and [ . u is the axial
] l o o

displacement of a point in the shell wall and w is the inward deflecti

tien of

the median surface from the initially deformed shape. |f normals to the median

surface remain straight and unextended throughout the deformation,

v - +
usu =~ 2z(w v, )

X (n.2a)

where u is the axial displacement of a point in the median surface, o is the

additional rotation of the median surface normal about a circumferentiel axis
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due to loading and Yz is the corresponding transverse shearing strain. It
is noted here that Yz and w 3re not independent of each other.

The strain comporents are obtained from [see Eqs. (A.1) and (A.2)]

2 2 2 2,2 2
- = -Z\ 2 g .
ds | dso 2exdx + zem(a-wo Yode© + ngdz + /xzdxdz (A.4)
Hence,
i "
ex = u’x + 2 w’x(w” + 2w°!x) - ‘(w,xx 7XZ,X)

= = wf(a=z~w
E /( )

= (w _=y _jw =0
€2 ( » X% Tv2! o, X

=W _ =We=Uu w Tw =W (A.5
Tz yX 3% 0,X »X {A.)

in which it has been assumed that

2 v (w
U <<',.‘(

X Wt x) << 1 W<<a sz sw {A.6)

J bl

It is noted that a transverse shear term has been retained so that
the usual Kirchhoff assumption that lines originally normal to the median
surface remain normal is removed. However, with regard to kinematic con=

siderations, it is assumed that such lines remain straight and uncxtended.
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In order to obtain a se: of equilibrium equations consisient with
the strain-displacement relations [Eqs. (A.5)] the f:.rsi variation of the

total potential can be set equal to zero

(u+ V) =0 or 8U + 6V = ¢ (A.7)

where U is the strain energy eand V is the potentizl due io externally apvlied

Ioads. Thus,

L/2 h/2
U = zmr-L/Z-r-h/Z (oxéex + 0965@ +c be, * széykz)(a-z-wo)dzdx (A.8)

When Egs. (A.4) and (A.5) are substituted into £q. {A.8) and integrations by

parts are performed, €q. (A.8} becomes

L/2 EQ
U = 2waf_L/2 {[-Nx,x + (Qwo,.x),x]f)u M [-Mx,xx - (wa,x+wao,x) - a Jow
r /2
* (-Mx,x+Q)57xz}dx * ZFE‘L(NX-Qwo,x)éu L2
- L/2 L/2
+ [(“x,x+ wa,x)6w]-L/2 + [Mx(67xz - 6w’x )] -2} (A.9)
in which the stress resultants are defined bv
h/2
N, = [ o (1 = (22/h)8 - (w_/a)] dz (A.10a)
=h/2
h/2
No=J  o,dz {a.10p)
- -n/z v
h/2
M= ‘r-h/z o [V - (2z2/h)6 = (w /a)]zdz (A.1ec)
h/2
Q =y f~h/2 sz[l -~ (2z/h)s = (wo/a)] dz {A.10d)

e i
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where o, is the axial stress, 0@ is the circunferential stress and Ty s
the transverse shear stress with x as the corresponding shear coefficient.
The potential due to external pressuie is obtained by considering the

volume change. Thus

Vp = jVOL pd (VOL) (A.11)

The increment of volume is given by

d(voL) = m(a + 2 - W2(e ) (A.12)
. 2 i
z == h’2
where w = w + W, and
’ h
(dil) = (1 +u 7w )dx
z ==h/2 X e

The variation of this potential is

L/2

- ord? ILITY: b x
8V, = pra j_m LU+ 5o -3 (e +ge ) (A.13)

After integration by parts, Eq. (A.13) yields

12 =
2 S 2 h
6V_= pra r 2 {L-;‘(I-o-i%-%)(li»u’x +§w’x)]6w

(continued on next page)
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+2(0 + - 3L)Z*i (bu + 2 6w) 1dx
2a’ «a 2

2a
= L/2
spral (¢ 2 - Hiu + Lol |, (A 14)

Finally, the variation in the potential cue to other externally applied loads

is given by

- L/2 . L/2 " L/2
™ o o )
BV = [N bu ]-L/Z lew,xﬁw]_L/Z [Hx6(7xz w,x)] L2

L/2 L/2

- [Mx,xsw]-L/Z * [wao,xau ]-L/Z (A.15)

The potential of externally applied loais s

v=vp+v {A.16)

Equation (A.7) to (A.16) leads to the differential equations of equilibrium

) - (Qw_ ) =0 (A.17a)

=N+ pli+h/2a - (wiw )/a] (wh, ,X 0,x”,x

X,X

- [N (ww) 1 =N /a-Qx-p[l-#h/Za-(m-wo)/al(l+ulx+h/2wx)-c

x 07,x7,X ? s s
{(A.1Tb)
= 0N a .Lh_ [} a Lras 4 . . N s 1 7 . Y _
“X,X ~ 2 L 1/ ca \wW T wol/aj\w + wo),x = Q (A.l7c)

with boundary conditions at x = + L/2
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N, - Qwo,x + (pas2)(1 + h/2a - (\«ffmof)/a]2 =0 or du = C {(A.1Ba)
=Mt (h/Za)(Pazlz)[l + h/2a = (w + wo)/a]2 = 0 or & = 0 {(A.18%)
Nx(w + wo),x + Q=0 or bw = 0 (A.18¢)

Equations (A.15) combine to yield the resulting axisymmetric equilibrium equa-
tions for hydrostatic pressure loading of a shell of uniform thickness (in

which the assumptions given by inequalities (2.4) have been utilized), viz.,

- Nx,x + 2p(1 + 8« (w+ wo)/a}(w + wu),x =0 (A.19a)
[Nx(w * wo),x];x + Hx,xx * Ng/a # PLl + B+ (w+ wo)/a] =0 {A.19b)
-Mx’x-fQ:O (A.19¢c)

"
where & = h/Za (set equal to zeroc when Flugge accuracy is not required, i.e.,
when the variation of radius of curvature across the thickness is neglected).
Ffor the problem being considered here, the following conditions must

also be satisfied at the shell boundaries x = + L/2:

N+ (pa/2)(1 + 86 - (w+ wo)/a].z =0 (A.20a)
WS W= Wy (A.20b)
w=0 (A.20c)
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where e is the deflection of the ring at the contact surface and W i
the deflection of the section of shell in contact with the ring. For the
ring=supported shell considered here the axial stress resultant at the
frame is due to the external pressure loading [Eq. (A.20a)]); the ring and
the shell remain in contact throughout the deformation [Eq. (A.20b)]; and
since the ring flanges are not permitted to bend, the rotation vanishes at
the boundary [Eq. {A.20c)}.

The stress=strain relationships are those for an orthotropic.
lineariy elastic shell with st 1aces of elastic symmetry defined by normals
directed along the coordinates x, ¢ and z, respectively. The shell skin is
assumed Lo be in a state of modified plane stress (i.e., with a transverse

shear term permitted), thus

€
X
g = + v A.2la
x ]_VZ (ex pre(p) ( )
E
OCP = 'J)_,-vz (eq) + Vx@ex) (A.2 1)
Txz = ze7xz (A.21c)
o =0 (A.21d)
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and tcom tre axisymmetric nature of the structure ard l!oading

oo = Tqz = O (n.2le)
whe e
Vx¢E¢ = vqux (A 211)
Vg =V (A.21g)
in which Ex and E¢ are the axia! and circumferential elastic woduli, res-

ectivelv, G is the transvers hear modul and v_ are the Foisson
pect LET t t erse shea odu lus, VX@ »qu r (o]

ratios.
In order to formulate the problem in terms of the stress resul-

tants, rather than the stresses, Eqs. (A.10) and (A.21) are comtined. Thus

N = [ax - Ax(wo/a)]cxo + axmewo - [bx-Bx(wola)]w’x (A.22a)
Ncp = {[1 - (wo/a)]A@ - (- 2(wo/l)]8@ + Ccp]gcp MR NECRELL

o o}
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o7
o= lb, - ax(wo/a)]ex + tq:xEcp = ldx = C (w /a) J‘”,x (A.22¢)
(o] [¢]
"2
Q = sz(‘”,x .u) - . (“’,x = u) (a.22d)
in which
- + +
€"o u (w’x/Z) (w,,< ZWO,X) (R.23a)
w
€ = - - (A-25b)
Po L]
and
h/2 E h/2 &
a =] —&= (1= oz , A = [ —H= dz
~h/2 1=y -h/2 =%
h/2 € v h/2 E v
b_ = i—’% 2dz , a = [ =2 4z
(2l ~h/2 1=y xP =h/2 =y
h2 E, . h/2 €
b = —== (1- Z)zdz , B = zdz
2 1t a X Chs2 et
A = e E dz B =+ [ e —(P-E zdz
2 ? P av 2
Y2 ey “h/2 1=y
h/2 € h/2 E 2%
¢ = —%J —(22- zzaz , CX = L-Z_ dz
¢ a -h/Z I=v -h/z 1=y
h/2 . E ; h/? )
d = (- = %dz C .=n G () - H)dz (A.24)
x -h/2 a I-vz xz ~h/a Xz a




58.

The basic Egs. (A.5), (A.19) and (A.22) subject to boundary con-
ditions given by Eq. (A.20) describe the deformation of the shell. These

consist of ten equations in the unknowns Nx’ Q, Hx’ N, v, u, w, € €

@ @

and 7xz'
Integration of Eq. (A.19a) and application of the boundary con-
dition Eq. (A.20a) reveals that Nx is very nearly constant. In fac¢, the

assumption that
(w + wo)/a <<l +8 (A.25)
leads to

N = - (pa/2) (1 + 6)2 (A.26)

If Eq. (A.22a) is used to elimirate €y from Eq. (A.22b-d) and
8]
if Eq. (A.23b) is introduced, the resulting equations reduce to the linear

relations
- - Zﬂ. 3 - W
Mx lex 3 3 Eqkw wa,x {A.27a)
- - 2 .
N_=v_ N = 28E w = 2—‘3— 6}E.__cn . (A.27b)
¥ P X ¥ 7 R
Q=he [ - (w/a)](w,x«»)

w
he, (1 = (—39) 17,2 (A.27¢)
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where

z, = [bx - Bx(wo/a)}/[ax - Ax(wo/a)]

28 2% 1L .
BGEQN bam g 1
W0
Dx = dx - Cx < - [bx - Bx(wo/a)]z‘
et
a.n\'
v, = — N
% W,
a = A —
X X a
he: = F e[V - (w/a)lA =1 =2(w/a))8 +C
- 7 Ve o/ B o/ P T Yo
*
hG, = C,, (A.28)

In order to avoid variable coefficients in the final differential
equations the shell material must be assumed to be homogeneons in the axial
direction; in addition the W, terms must be negltected in €qs. (A.28). Thus,

W, must be small enough for the following assumptions to apply:

wola << 1/2

w
)
— << (dx - Zlbx)/(cx - zlex) = 0(1)

(continued on next page)
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-2 . .
2 o(1) (A.29)

If the shell material is also homogeneous through the thickness, the

condition wD/a < < 1/2 prevails and, hence Eqs. (A.28) ra=ducc to
z, = - (a/3)62
£ = v_E /(I-vz)
& - Ve x
0¥ =0 (1 - (87/3)]
x x
. Bl + (82/3) 7 (1-v2) )

fo

ze =nﬁxz (A.28a)

where

= 3 .2
Dx = (I/IZ)Exh /{1 = v%)
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When Egqs. (A.27), (A.2Ba) and (A.29) are substituted into Eqs.
(A.19b) and {A.19c) the shell probiem reduces to the solution of the follow-
ing pair of linear, second order differential <quations with constant co-

efficients:

Lygw * Lyg® = biavo * Ly (A-30a)
LZIW + LZf”,x = L25w° (A.30b)

where Lij are cummutative differential operators defined by

2 2
= 23 (S _phyd 2 % 2a 3% \d°_ 2 %
Ly ('Nx+36F'qxx 4)d2+a6E¢_(-Nx+3éEqu) 7+ 5 ok,
X dx
2
d 2a 3%
L., =D ==+ 5=§7E
12 X dxz 3 a
- 8 2 , , 2
L = (—a' 5351 + hGK + gb-“d-"';.-»\.- (g_i bjf_.' + hG:: )g_
2] o] Px X2 2 axl = 2 ax vz dxz
=D :‘2 hG*
LZZ T ¥x 7 xXZ
dx
2 2
Lz = 0+ iflfl).‘i_z.:N 4
- 8% ® dx
\"‘ 2
O h d
PR - - ehd
L‘u a Nx'! p‘\' + 6) sz 2 2—0

dx

“he app-oximations indicated above are associated with terms which
[N}
are due to <curlec beam=column and Flugge effects. For the shell considered

here these tervins are extremely small and hence are neglected.
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Elimination of w from £qs. (A.30) yields the following fourth order

equation in the deflection w:

"o * b/ (A/B  + b(o/L) /B = CE .
= (4870 /Blwy  + BEO/DITLL - (v, 72) (1+6) 1/aB(1¢) (A.31)
where
A=7-=-EF+u
B =1 - 49t

) L _ W 2%
(e/L) = hE¢/ka Dx

e < 2
y=7=- Nx/ka/(Q/L)

2 % <
E = (9/L) Dx/thz
= atdE /30 esL)R (A.32)
7o x

Subtraction of Eq. (A.30b) from Eq. (A.30a) yields a convenient

expression for the change in curvature

o = (B = WEO/L) 0 + BRIY = (v, /2) (148) 1/n1vs) et 1/ (14208)

X

(n.33)
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Egs. (A.19c), (A.27a} and (A.33) combined to give the following
relation for the transverse shear s'ress resultant:
k3 2
= - f - - 1
Q Dx*w,xxx 2(e/1) (2€~a)w’h uréwollxx./(l*zaﬁ) (A.34)
Finally, Eqs. (A.34) and (A.27c) corbine [using conditions (A.29)] to give

the rotation as a function of w
@ = {11+ (a8 lu  + £0/0) (Bubiztu ) 1/ (142at) (A.35)

The governing differential equations of the shell ccnsist of
any two of Eq. (A.31), (A.33) and (A.35).

In Eqs. (A.32) the nondimensional parameter » is a measure of
the nonlinear '‘beam=column'' effects (see Ref. 5). Although 7 and 7 are
numerically equal, » terms result from nonlinear effects while ; terms

result from the linear effects of the pressure. Thus if the beam=-column

effect is neglected y = 0 while

\.g'

Z 0.
The nondimensional parameter { is a measure of the transverse
shear effect. If no transverse shear is permitted G:Z o and § - 0.
furthermore, the nondimensiona! parameters « and § vanish when Fl:gge
tyre accuracy is not desired.
it is noted that special cases exist when A or b vanish. When
£=0, y=0, A=0.and B= 1, Eq. (A.3]1) reduces to the equation correspond=

ing to the omission of both transverse shear and beam-column effects. When
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the transverse shear and beam=-column effects combine to cauz2 § = 0, the
entire nature of the differential equation changes. When the higher order
effects are omitted, i.e., when 7 = § = § =G = A = 0, except the § term
in ihe danonnator, Ey. {(A.31) corresponds tc that obtained in Ref. 1, in
which Hom provided for the only significant Fl3gge type term, which cor-
responds to 5 # 0 in the expression for the axial stress resultant [see
€q. (A.26)).

When transverse shear deformations are neglected (¢ = 0) only
one equa.ion is necessary to describe the shell deformation. In this
case Eqs. (A.33) and (A.35) are satisfied by the condition that w = w _;

3 %°
and Eq- (A.31) reduces to

2 A 2
w;xxxx + b(e/1) (7KﬂVZxx*“(9/L) w= = L4y(6/L) Yo, xx

+ 8(9/L)27[lu(\,:;xlz)(l+£)]/a(l+6) (A.31a)

1
If Flugge thickness terms are also neglected {a=5=0) and if no initial

deflections are considered (wo = 0), Eq. (A.31a) reduces to

w +‘47(9/L)2w w(e/L)“ms(e/L)z?(l-v"" /2)}/a (A.31n)
» XXXX 2 XX X )

Equation (A.31b) corresponds to that obtained in Ref. 7, in which similar
formulae as those presented here w re developed and, in addition, tha re-

sults were expressed explicitly in terms of the load and the basic shell

material and geometrical input quantifies.
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EVALUATION OF c'

The geometric ring parameter c' is defined as {sec Eq. (3.4)]

h, R
g 1 \ Y O

ey By Ry 540 4. (81)
£ h R -2 fUR, €

where { = R = Z. Ffrom the definition (B}, it can be seen that c'
is dependent only upon the geometry of the ring Cross section and is
therefore independent of the choice of origin of Z.

Performiag the integration indicated in (Bl) for a general 'T"

section yields

- t t
LI -& - —L - - - _9- - - ..q_ - Thett
c' = Ac {_(bi hw)log(l + Ri) (b0 hw)log(l R';) hwlog(l Ro)} GENERAL 'Y

(82)

where, d = Ro - Ri is the total height of the ring cross sectior..

A. Origin of Z at Mid-Height of Ring:

For this choice of the origin of Z

= - 9 =r.-4
h,=h. =3 and R, =R =3

-
X
n
=]
+

NIT-%

Therefore, Eq. (B2) becomes
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- t./R t /R -
c'= KR_ :(bi"’«w}!cg{] + = “}-(bo-hw)iog{ i- = =l - hwlogi » LEJ]
f 1~d/2R 1+d/2R 14d/2R
GENERAL "'T"' (83)
However, recalling that
o n
log(l + x) = £ (--I)“-l E for =1 < x <1
n=1
© N
log(l-x) = = T ﬁ for =1 < x < |
n=1
and that
T%T'= ; (-x)n for =1 < x <1
X n=0

permits Eq. (B3) to be rewritten as

= t t. t.
R i 1, 1 ad 1l d 2 -in
c'm={bsh )=l +3 (v Doy (1 +=-5-2))
£ 0 YWR Z 23R ¥R R “R
t t t
+ o)L -L0-thEel 220y,
R R R R R 7 R
+h 20+ @ GENERAL 'T" (B4
W 12 R

in which all terms of third or higher order have been neglected due to the

fact that t and d are small compared to E, i.e.,
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l-(}-:)jzl-(gpzl
R R

where here, and in subsequent expansions, R is considered tc be very

much greater than d.

1. Rectangular Section

For a rectangular ring cross section of height d and width hw’
A_ = dh and t, =t ="
w
Therefore, Eq. (B4) becomes (R > > d)

1 - _]gz"‘
et T 1 T3 (E) = RECTANGULAR (85)

2. Equal Flange "' Section

For an equal flange "7’ ring cross section,

Coo R (p )E 1 dy2 _td 2 12, g1 d
cI—Af{(bhw)_[2+2(E) ﬁ2+3( J-!hw(ﬁ_)11+| (ﬁ)

EQUAL "T" (86)

where,




= 9 - -
A = 2¢(b=h ) + dh

If the sccond order terms in t and d of (B6) are dropped as being small

R >>d)

ﬁ-
g

3. ldealized 'T' Section

For an idealized 'I" section
h =0 N A, = 2bt £ 0 ; t =t, =10
Therefore, Eq. (B6) becomes (R > > d)

¢t = 1+p = IDEAL *T""
' R

B. Origin of Z at Lentroid of Ring Cross Section:

Since Eq. (B4} contains terms which can be related to the
first moment of area, it is logical to choose R to be the radius to the
£ - -

1

the ring Cross section.

The definition of ¢' can be rewritten as [see Eq. (B1)]

= dA dA
Cl:}_s—.‘[‘:i=x}—.[‘”f— (Bla)
f R-Z f 1-Z/R

or,




i LabE o)
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A A, Z%dA
v £ _f f
c' = 1 + - j LA, + I

(B1b)

RC Y 1-2/R

However, since the origin of Z i> taken to be the centroid of the cross~

sectional area,

J ZdAf =0
Therefcre,
hl2
c' =1+ (% (e8)
R
where,
o =\ I¢/As

is the radius of gyration of the cross-sectional area,

I¢ = r szAf is the moment of inertia of the cross-

sectional area about Z = 0,

and

el 1y T zh@a (89)




T0.

2 - -
Expanding Z°/(1 = Z/R) in a series (R > > d), performing the

integration indicated in (89) for a general "' section, and neglecting

terms of order (25/55) and higher, yields the following expression for c

¢l +—{=1{[(h -t - h .
I 4g © ° ° R
h 4

- (bt )+ ﬁ[(hi-ti) - (h-t )] GENERAL 'TV (810)
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APPENDIX C. AXISYMMETRIC BUCKLING LOAD OF INFINITE, UNSUPPORTED

ORTHOTROPIC CYLINDER UNDER AXIAL
COMPRESSTON

The differential equation governing the deflection of a perfect

shell subjected to axial compression is taken from Eg. (2.1); i.e.,

4 (mt4a) W@y
W xxxx M - jrevry W xx + 1k Y= 0 (cn)

The nontrivial (axisymmetric buckling) solution is

w = Dcosi %

(c2)
where L is the wavelength of the buckling pattern. Substitution gives
xu - heZaAZ + hel‘b =0 (C3=a)
. o ZE¥Q
D I %3 (c3b)
b= —f (C3c)
1=byt
Thus
22 = 20%(a + a%-b) (ck)

In order for w to remain finite A must be real. Then the following two

possibilities exist:

o




0<bc< az (C5a)
or

b<0 {c5b)

In the first case substituting Eqs. (C3b) and (C3c) into(C5) yields an

expression for the buckling Joad parameter 7“

7"’=il+u;a-g~a (C6a)

when

y e (c6b)
For sufficiently small o Eq. (C6a) is closely approximated by

7 el - - t(1-20) (c7)
In the second case (b < 0) the buckling load given by Eq. (C5b) is

% |

ANy (c8)

Equations (CT) and (C8) intersect (in the y, & plane)} when

Lo -F0-2) (C3a)
e
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i

2t =

e (c3b)

ol

Thus, when £ < 1/2 the buockiing load is given by Eg. (CT); when shear
deformation effects are nore significant, & > 1/2, the buckling load

s given by Eq. (C8). Thz buckiing load » s plotted as a function of

¢ for @ = 0.00549 ir Fig. ly, alvhough this figure is applicable as long
as @ < < 1. For the she:l comparable to that described by Eqs. (8.1) and
(8.2) (i.e., & = 0.1367) the buckling load is given by

7 = 0.857 (C10)

The corresponding critical pressure s p = 7.078 x !0“ psi
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APPENDIX D. PERTURBATION SOLUTION

The results described in section 8 show that the stresses are
approximately linear functions of the parameter > (see Figs. 3 to 10). This
observation suggests that a perturbation solution should give accurate pre=
dictions of the stresses and displacements when the parameter | is small
{see Eqs. (4.5d), (2.1 ) and (2.2 )). For the initial deflections con-
sidered here [see Eq. (4.1)], the governing differential equations [Egs.

(2.1 ) and (2.2 )} are

"o+ (4/8) O/ = (1/8) (9/L)“wp - 4(a/L)? /-"; "o (01a)

't
w _ =Bw o LE (/L) "(w = wp) (D1b)

,X sk

where wp may bte obtained from Eqs. (4.2).

o 11 -
LN |

fe enon Yot
Lo a2 1

T , a solution nay be assumed to be of the form
© ‘ © .
w= ¥ wi(x)d.rI , w= T o (x) (02)
i=0 i=0 °
Substitution of Eqs. (D2) into (D1) leaves
[w + (/) (/1) - (br8)(0/L)% 1 + wiw + (4/8) (/L)%
O, XXX o P by xxxx [
+ (W) e/t T+t ) =0 (032)

and




(@

o,x

— ‘0." - - . L'_ ;,2 P
'ﬂde,xx + 4e(6/L) (wo-wp)] + w[mi,x -Bw +hee/) Wl e Tl

1, xx

(D3b)

The first approximate soluticn :;, 5; may be obta‘ned by setting

¥ =0 in Egs. (D3). Thus,

where

+ (/B) (6/1)"% = (4/8) (a/L)“wp (Dka)

W
0, XXXX.

-“ l‘_
® 'Bwo,xx - Lt (6/L) (wo-wp) (o4b)

The solution for W, is taken in the form

Wo = Wpll *# ¢ 109, () + ¢y, (x) + cq

5 (x) + €0, ()]

g,(x) = sinh(6x/L/B)cos (x/L/B)
9,(x) = sinh(6x/L/B)sin (6x/L/8)
93(x) = cosh (6x/L/8)sin (6x/1/B)
g,(x) = cosh(6x/L/B)ces (6x/1/8) (05)




-]
(€)Y

The arbitrary constants C;, 2re determined by using syrmuctry
[see Eq. (4.9)] and by applying Eqs. (2.9b,c) in conjunction with Eqs.
(3'8)) (}20)1 (A%)} (A}j): ("‘IO)J (D‘#) and (05) Thus,
- Ed 2 — — —
Wy = [8(a=28)/6" 11 = [(ra-08)/ (ra=78,) 1 g}, x)
+ (9,(x)/8) (6,075,011

and

g == G (aTa-L(1/28) + & (6,0/6,0) )T, (x)/B]

X

+ [(1/28)  (6,4/6,0) =~ tlg,(x)] (06)

where

o
i

) - = - - = = - - - -
10 = (2/8) (335%970) /1B, 930950 + 9)6940) * B2 (930940 = 930920)]
20 = (®19) * B2930) /1By (930950 + 91094p) * B (330349 = 9109;0)]

Sun = (By930 = By930) /(8 (935955 * 915%,5) * B, (85090 =

% w b W w
Ao = BCBGZO/[BBC * GIO(]-ﬁc)[ac + (1+8-2¢ )QE]/BC]

90 = Qi(L/Z)

(continued on next page)
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1+ 28(1 - 28 + @)

2 1 =28(1 + 2t -q)

The corresponding siresses may be obtained by direct substitution

of Eqs. (D6) into Eqs. (5.3). This solution could, of course, be obtained

from the solution presented in the text by simply setting = 0 in Eqs.

(4.14) and (4.13).
The first perturbation yields

v + 4/8) (/0% = - () (/0% (07a)
b, xxxx 1 0, XX

and

& =wm - be/)"e (07b)
},x b, xx }

with boundary conditions

;7| ( 1/2) = 0 , 5‘& L/2) = 0 (08)

The solution for ;l can be shown to be

w =
|

~[8(78=78))/6% ey 15, (x) + €13, () + (8x/1)[c},3, () + c5,35(x) ]

(09a)




=3
(=]

€)== DU = (6,0/6,,), (ob)
3y = - (1/2)01 + (GQO/GZO)J (99¢)
a1 T A Gug * B oyg/(B (9503, 04909, )48, (950,075 ,09,0) ) (09d)
Cyy =+ A Gyp-B Eﬁo/[al(gﬁoaéo+§|o§uo) + B2 (939,791 992¢) 1 (P%e)
A= (-8/2)(c) 9,0 * 5,950 (09¢)

B = = [1-26(28-0) ity 9y07c5 950+ (0/2) iy (9,97G,0)¥e 5 (950% 940
T 2eL-2c), 95042519, (0/2) L meyy (90 900 ¥e ) (9,07950) ] (05y)

The solution may now be written to inciude the {irst perturbation,

thus

W= G; + W and w=a ot (D10)
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When 7y and ¢ are small (as they are in the region of p for which

the shells considerad in this work behave elastically)
B=1«4yt~1 [see Eqs. (2.4)]

Then the linearized form of G4, G, and GLO become

o xR -2 @FJ]

- - !0_-3.'.
Gy = Fy 2¢ 3 (F4+F2F3)

6o %ﬂr“ +2§[F27--0—39lF) F, ] (011)
where
Fy = (2/0) (355 + 9500/ (B39820%910%0) * (3309407310720 )
F. =

2 = (970%930)/((95090%9109u0) * (9305497910%20)

!o.g: - - = - _—— - - - - - - e — .
5 Fa = 1940950791090 = (939970%910940) 171 (9309;0%91090)+ (9399407910920)

‘X

The functions Fi’ correspond to the functions Fi listed in Ref.

(12) which were displayed graphically as functions of g for the isotropic case.




The stresses can be obtained by substituting Eqs. (D10) into
Eqs. (5.3) and using Egs. (5.6). In general Eqs. (D11) and (012) may be
used in place of the definitions for G o given in Egs. (06) . When this
is done, the charts of Fi ve § offered in Ref. 13 may be utilized to
obtain G 0 This procedure results in a considerable reduction of compu-
tation time and provides accurate stresses and dispiacements for the most
general case provided that § is reasonably small.

To obtain the Fi vs B relations displayed as functions of 7 as
well as 6 in Ref. 6, it is necessary to set £ = 6 = @ = 0 in £qs. (4.12) and

PN
to replace GI’ GZ’ 63 and 64 in EQS(hJZLwithFl, Fz, J 0.91/3 F3 and
T

57),91/3 Fk’ respectively. These functions are displayed graphically in
Ref 5.




APPENDI) E

STRESSES IN NONHOMOGENEOUS SHELL

it was observed in Ref. 13 that because of the nonhomogeneity
of material properties through the thickhess of the composite, Hill's yield
criteria for a homogeneous orthotropic material could not be expected to
provide accurate estimates of the yield pressure. This short coming meti-
vated the work that is discussed in this appendix.

The elastic constants given in Eq. (B.1) were obtained experi-
mentally by measuring the strains in a pressurized cylinder (of 3C:2L winding
ratio) and utilizing stress strain relationships in a simple homogeneous
shell theory (Ref. 14}. Hetce, it is reasonablz to expect that the homo-
genenus shell theory utilized in this work will accurately predict the
shell deformations [C3s. (4.13) and (4.14)]. However, the nominal siresses
obtained with these constants for an equivalent homogeneous material [Egs.
(5.3)] cannot always b2 exvected to correspond to the actual stresses acting
in the nonhomogenecus composite shell, which consists of materials of widely
varying elastic properties.

{f the deformations .redicted by shell thecrv are accurate, then
the individual conscituents of the shell material must deform according to
Eqs. (4.13) and (4.14). Once these deformations are known, it is recessary

1o use £9s. (5.1) to calculate the stresses in the constituent materials.
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It is possible, however, to obtain approximate values for the
stresses in the nonhomogeneous shell by utilizing the uniaxial stress
strain relationships suggested in Ref. 12 and Ref. 16.  For example, the
effective composite modulus EZ’ say, in a direction normal to the fiber
direction could be obtained by assuming the fiber resin system to behave

as a spring in series. This results in (see Ref. 15)

1+V _/V

_ [
2= EGTEV E
e'g

9

E ) for Vg > 68 percent (E. 1)

Ve
in which Ee and E9 are the moduli of the resin and fiberglass, respectively,
Ve and Vg are the percentages, by volume, of the resin and fibarglass. In
Ref. 15 it is shown that & more complicated relation is necessary for com-
posites with Vg < 68 percent.

It is noted that the effective modulus given by Eq. (E.1) is
based upon the assumption that the spacing between the fibers is uniform in
that the volume percentage ratio vg/vé is assumed to be equal to the

(presumably) uniform ratio of fiber cross section to resin cross section.

wn

Shaffer ~ has pointed out winding irregularities could cause serious
fluctuations in this ratio.
The effective composite modulus E, in a direction parallel to the

fiber direction is given by

1+ V /E V
E=E( € e

I vy ) (£-2)
e’y

” Shaffer, B.W.: Filament Reinforced Plastics Micro-Mechanics-Structural
Mechanics: Seminar given at Polytechnic Institute of Brooklyn, Feb. 9, 1968.
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'n the filament winding direction the stresses ineach of the con-
stituents may be obtained by multiplying the stresses in the equivalent
homogeneous shell by appropriate ratios of the elastic constants (thesz
ratios are often referred to as stress concentration factors). There is
some approximation involved due to neglecting Poisson ratio changes, but
the error induced in this manner is expected to be small. |f more accuracy
is desired, the deformations given by shell theory could be substituted
directly into Eqs. (5.1). In the directions normal to the filament winding
direction, the stresses are transmitted from one constituent to the other
and must be matched across the glass resin interface in order to satisfy
equilibrium requirements. In these directions it may be assumed that the
stresses in the fiberglass and resin are equal.

Since the stresses in an equivalent homogeneous shell have been

calculated (see Table 3), the stresses of the constituents may be approxi-
mated as follows:
1. In a fiberglass filament

2
ah ‘ Eq(l v©) oxh)

o~
=z
%
i

g _, 2y N
X EX(I vg ) Tx

in a longitudinal layer

h 1+v _/V E h
ﬁ;§L9 - (__._Jl_JE___ £ q?Q.g
g MHEVZEV'E
x eg ge ¢ X

(continued on next page)




84.

g h i+V /V E oh
q e X

¥ = )'ﬁl H.
g H'EeVg/EgVe E, ¥

AY
7/
oS

in a circumferentially wound layer

o h £ (l-vz) o h
qfﬁ_)g - -_éL__—TE— ) (E.3)
x EQ(l-vg b} Tx

2. In the resin

2
3529 = Ee(l-v ) Sﬁ&g
W e (-v.%) W
X €
in & longitudinal layer
+
(F'T'Lh)e - (llevv/ﬁ: v ’2—e ('%’_(E_h_)
X eqg ge @ X
o h 14V _/V E o h
(_x_ = ( q [ )__e_ X AY
NJe= Grev e IE &
X eg ge x X
in a circumferentiatly wound layer
o h E 2 a h
D - 2 D) (£.4)
X P 1=v X

vg and v, are the Poisson ratio’s of the glass anc¢ resin. The g and e sub-
scripts denote the local stresses in the fiberglass and the resin, respectively.
Once the stresses have been obtained from the above relations a

maximum stress yield criterion can be used to approximate the magnitude of

the pressure at which yielding begins. Thus,
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ng 2(h/a)
= in the fiberglass

= 2 oh
g (1+5) (Nx 9

Py
7_2 = _—;ibéé%ﬁ—— in the resin (E.5)
e (H‘G) (N_-

)8
X

where Yg and Ye are the yleld stresses c¢i the fiberglass and the resin,
respectively.

Limited calculations were performed on o shell of dimensions equal
to those of the equivalent homogeneous shell [Eqs. {(8.1)]. The constituent
elastic constants and yield stresses were taken from Ref. (18), whiie the

volume ratio was deduced from Ref. 1.

Eg = 10.5 X 106psi s Ee = 0.5 x loépsi
Vg = 0.2 [} ve = 0'55
Yg > 200,000 psi ’ Y = 22,000 psi

V/v =2.188
q e
»
Substitution of Eqs. (E.6) into (E.5) to (E.3) gives approximate
values of the initial yieid pressure. It is found that the yielding would
initiate in the resin near the shell inner surface, next to the frame, at

pressures of




ey
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Py = 11785 due to circumferential stress in a longitudinal
€ layer

Py = 11137 due to longitudinal stress in a circumferential
¢ layer

These yield pressures are within ten percent of the experimentally
determined collapse load of the shell examined in the text. Hence, the
shell appears to be weakest at the frame, near the inner shell surface.
The stresses in the direction perpendicular to the fiber directions exceed
the relatively low yield stress of the resin at extremely low pressures.
When this happens the shell might be considered to be delaminating in that
the resin is no longer binding the layers together.

Winding irregularities, as noted earlier, may, through effective
moduius changes, cause yielding to occur very early in some portions of
the shell. Evidently, this early yielding results in littie more than slight

changes in the composite moduli (e.g.; see Ref. 14 and Ref. 19).
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TABLE |
STRESSES, DEFLECTIONS AND LOADS (X = & = £ = Q)
h = 0.388 in. h = 0.194 in.
ISOTROPIC 1SOTROPIC
6 6.
ORTHO- iE=/2j395 x 10°(PS1) ORTHO- §E=/2j395 > 10°(PSI1)
Y I tropic | \of Tropic | ¢ |
1,335 (Ef/E) = 1 1,335 (Ec/E) = 1
-4 0.1 0.931 0.247
P x 10 0.2 1.861 0.495
0.3 2.791 0.742
(PS1) 0.4 3.722 0.990
5| o] 0.766 0.395
o, % 10 0.2 1.532 0.790
(PS1) 0.3 2.298 1.185
0.4 3.064 1.580
2 0.1] 2.716 ] 3.013 3.236 J1.226 | 1.324 1. 442
w x 10 0.2 5.435 ] 6.029 6.474 12.466 | 2.661 2.895
(TN ) 0.3 8.157 | 9.045 9.714 |3.724 | 4.013 L4 .360
' 0.4 10.88 li12.06 12.96 5.001 | 5.382 5.839
2 0.1] 2.652 | 2.950 3,185 11.034 | 1.136 1.283
We X 1¢ 0.2 5.303 | 5.898 6.370 |2.062 | 2.267 2.561
(IN.) 0.3} 7.953 | 8.846 9.793 |3.085 | 3.394 3.8%6
' o.4110.60 J11.79 12.74 L.102 | 4.516 5.105
0.1 1.407 } 1.569 i..%9 10.538 | 0.594 0.504
-3 % 10 0.21 2.815] 3.135 2.557 |1.072 | 1.186 1.004
UGN 0.3] &4.2201 &.702 3805 81.601 | 1.773 1.501
At 0.4 5.625 | 6.267 5.071 [2.125 | 2.357 1.996
0.1 1.268| 1.418 1141 0.494 | 0.543 0.460
P x 10 0.2} 2.536 | 2.821 2.282 [o0.986 | 1.084 0.918
'551) 0.3] 3.803| L.230 2,428 |1.475 | 1.623 1.37h
{ 0.4 5.070 ! 5.640 L.56k |1.962 | 2.159 1.829
0.1 0.9711 0.9775 0.9775 10.8919| 0.9133 0.9133
L /L 0.2 o0.9704 0.9773 0.9770 |0.8870( 0.5097 0.9097
" °f 0.3 0.9608 0.9767 0.9765 10.88iT| 0.9039 0.9059
_0.4] 0©.9689 0.9760 0.9760 |0.8759| 0.9017 0.9017
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TABLE 2 Y{ELD PRESSURE
-l "
YIELD Y!ELD STRESSES YIELD PRESSURE > _i0 * psi
CRITERION " FRAME Mi DBAY 1 HIDBAY
P = PLASTIC o 7 Psl INMER OUTER MED 1441
POTENTIAL SURFACE SURFACE SURFACE
M= MAXIMUM h, in.
STRESS Y, Yy Yo 0.388 | 0.194% [0.328 | 0.i1Sk | 0.388 |o.1¢k
_ 6 A ¢ .6
ORTHOTROPIC: E = L.7h x 107 PSI, ES = 6.ik x 10° PSI, Ep = T-2 ~ 10 PSI
P(nz = 0) 1.0} 1.7} 0.220.3749] 0.1702 | 0.3992] 0.1902] 0.4325]0.2538
P(ci = 0) o o 1 0.22]0.3740} 0.1713]0.3979] G.1901 | 0.4308{0. 2352y
P(oz # 0) e « 10.2200.3740| 0.1733 [ 0.4332] 0.209C | 0.4597 |0 502 |
kX . e i
M .oy 1.7 1.€58 | 0.6641 |2.627 | 1.4k | i
. 6 -~ . €
ISOTROPIC: E - E + E_ = 5.355 x 107 PSi. Ec = 7.2 x i0” PS|
: |
P(o, = 0) 1.0 1.0f0.22f0.3753| 0.1700 | 0.4015] 0.1521 | 0.45730.2397 |
P(o,=0) [1.7| 1.7]0.2200.5754| 0.1705 | 0.4019] c. 1922y 0.4383 [c.2hc6 |
P(az = 0) % » 10.22)0.3754 | 0.1707 [ 0.4021] 0.19z2Z | 0.4389|C.24¢;: !
P(o, # 0) o = 10.2210.3754 | 0.1707 | 0.5060} 0.27115] 0.5054 [0.2935 |
P(oz = 0) 1.0] 1.0]1.0 |1.885 fo.7i57 | i.771 | 0.8718 ] :.855 |i.0ne i
!
P(gz = 0) 1.7l nT T 12.882 fr.2i7 | 3.010 | 1482 (1 Z.i53 |1 Ten I
o o Py Py {
M 1.0 0 1.808 | 0.6305| 1.6:6 | 0.900% f
o . {
- e oy :. ‘
M [0 A I 3.074 f1.071 | 2.736 | 1.931 |

Maximum Stress - Axial

Maximuia Stress - Circunferential

Reproduced From
Best Available Copy

(continucd on next page)
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YIELD PRESSURE
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YIELD YIELD STRESSES YIELD PRESSURE x lo;h PS1
CRITERION 5 FRAME MIDBAY MIDBAY
P - PLASTIC x 1077 PS|I INNER OUTER MED I AN
POTENTIAL SURFACE SURFACE SURFACE
M - MAXIMUM h, in. —
STRESS Y, Y Afz 0.388:1 0.19% [0.388 [o0.194 | 0.388 lo.lsh
- N
ISOTROPIC: E = E = E_ = Ec = 5.395 x 10° PS|
P(oz =0) 11.0] 1.0] 0.22]0.3730f 0.1706) 0.3946] 0.1897| 0.4228| 0.2304
P(oz = 0) 1.7 1.7] 0.22]0.3733] 0.1708| 0.3953] 0.1897| 0.42k42} 0.2309
P(oz=o) 1.0} 1.0]1.0]1.656 1 0.7519] t.701 | 0.86i3] 1.753 | 0.9902
P(oz = 0) .7l vl 7 2.8 | 1.278 | 2.851 | 1.k61 | 2.981 | 1.683
= ¥ PRV A
M 1.0 1.0 1.901 | 0.6825] 1.516 | 0.8423
M 17T 3.232 | 1.160 | 2.576 | 1.432

“Maximum Stress - Axial

““Maximum Stress = Circumferentia!
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TABLE 3. TRANSVERSE SHEAR DEFORMATION AND BEAM COLUMN EFFECTS
2

(a0 =0, 6° = 0.003689, o = 0.005489)
7= 0.2 =0 2 5 0.2
MIDBAY FRAME MIDBAY FRAME
E -8.255, | -8.076 |-8.261 | -8.073
Nx -8.381 -7.984 -8.870 -8.424
;, MEMBRANE 0.9973 1.606 0.9971 1.006
ox. 0.5999 1.008 | 0.9979 ] 1.009
N +0.125 +0.284 |[+0.133 +0.25k4
BENDING +0.0405 +0.395 1%0.0925 1 310.4s5
i, MEMBRANE ).473 1.447 1.474 .46
O 1,493 1,432 1.5670 1.502
N, +0.0570 1+0.128 [+0.0560 | +0.129
BENDING £0.0735 20046 1+0.0685 | +0.161
i INNER 1.535 1.579 1.535 1.580
O@ . SURFACE 1.572 1.583 | 1.644 1.668
N ouTER 1.421 1.324 1.423 1.322
SURFACE 1.425 1.291 1.507 1.346
b INNER 0.873%0 1.250 0.8646 1.300
9% SURFACE 0.9591 1.40k | 0.9060 | 1.465
N ouTER 1.123 0.7220 ] 1.131 0.7128
SURFACE 1.040 0.6132 ] 1.091 0.5545
Txz 0 0.1261 0 0.1261
~=£MED| AN
N, SURFACE 0 0.1283 0 0.1259
INNER 0.1873 0.1517 | 0.1882 0.1510 j
SURFACE 0.1766 0.1451 ] 0.1776 0.1384 j
EL MEDIAN 0.1768 0.177t] 0.1788 0.1771
Y_ SURFACE |_(.1775 0.17451 0.1732 0.1708 :
OUTER G. 1714 0.2217] 0.1707 0.2233
SURFACE 0.1780 0.2k35 1 0.1690 0.2505
" = 0.1367
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SCALE SECTION OF STRUCTURE (WITH
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TABLD 3. TRANSVERSE SHEAS [ TFORMATION AND BEAM COLUMN CFFECTS

=02 v =0 | v=0.2
MIDBAY FRAME M1DBAY FRAMF
£ - 894" | - 8.0 - 8.200 |- 8.008
N - 8.319 - 7.921 - 8.792 - B.372
; o h CHBRANE 0.9972 1.006 0.9970 1.006
1 ) 0.9990 1.007 0.9985 1.008
* BENDING |+ u.128 0.292 +0.136 + 0.300
+ 0.0385 4 0.380 + 0.G6k 4 0.394
5 h MEMBRANE 1.463 1.436 1.465 1.436
ESL 1.483 ).423 1.557 1.493
x BENDING [+ 0.0525 1 0.128 1 0.0545 1% 0.129
+ 0.0730 + 0143 | 1+ 0.0730 i 0.150
o h INNER 1.525 1.569 1.524 1.57C
R*—-SURFACE 1.562 1.570 i.6316 1.648
x OUTER 1.412 1.313 1,415 1.311
SURFACE 1.416 1.284 1.490 1.349
o D INNER 0.8697 1.297 0.8610 1.307
- SURFACE 0.5614 1.288 0.9353 1.402
x OUTER 1.126 0.7157 1,134 0.7063
SURFACE 1.038 0.6280 1.063 0.6146
T MEDIAN 0 0.1291 0 0.1290
: N SURFACE 0 0.1265 0.1245
3 INNER 0.1883 01517 0.71893 0.1511
3 SURFACE 0. 1759 0. 1465 0.1752 0. 1424
i P MED | AN 0.1794 0. 174k 0.179k 0. 174k
: 7~ SURFACC 0.1780 0.1752 0.1738 0.1715
§ z OUTER 0.1717 0.2236 0.1709 0.2253
3 SURFACE 0.1787 0.2413 0.1721 0.2379 |
,
i
B
e =0 p./p = 1.036 . 1.036
fg=0.1367, p /p = 1028 ,  1.023 |
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